8. THE THEORY OF RECEIVING ANTENNAS

The receiving aerial is destined for reception of electromagnetic
waves and transformation of their energy to the energy of directed
waves or currents of the high frequency. The operation principle of
the reception aerial differs from the operation principle of
the transmitting aerial. To show this, let us place the aerial in the field of
the electromagnetic wave. It is obvious, that under action of a tangential
component of the intensity vector of the electric field in every aerial
element EMF will be induced. In contrast to the transmitting aerial
where the applied EMF is concentrated between input terminals, in
the reception aerial electromotive forces are allocated all over
the surface.

Due to the occurrence of the dispersed EMF in the reception
aerial the current starts flowing. This results in the inducing of
the secondary field, excited by the reception aerial. The intensity of
the secondary field may be found from the boundary condition: the sum
of tangential intensity components of primary and secondary fields on
the antenna surface should be equal to zero. Such secondary field,
a reradiating field, is typical for the aerial, which operates in
the reception mode.

Thus, the aerial operation in the reception mode essentially
differs from the operation in the transmitting mode. These features of
reception aerials result in that their theoretical research is more complex
in comparison with the transmitting aerials. In this connection for
the definition of the basic properties of the reception aerials
the reciprocity principle is applied. According to it characteristics of
the aerial, that functions in the reception mode, is determined from
parameters of the same aerial operating in the transmitting mode.

8.1 The dipole in the field of the flat electromagnetic wave

The mechanism of the EMF occurrence on the dipole terminals
under action of an electromagnetic field may be considered by means of
the strict theory, which is stated in subsection 4.3. If to assume, that
the current distribution in the reception aerial is the same as in
the transmitting aerial, the analysis of dipole operation in the reception
mode becomes simpler.
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Fig. 8.1

Let us find EMF on terminals of the dipole, placed in a field of
a flat wave. Generally, the polarization plane of an incident wave does
not coincide with a plane, which is combined with an axis of the dipole
and direction of the wave arrival. In Fig. 8.1 the dipole with length 2/,
loaded on impedance Z,, is presented. In the plane of figure there is
the axis of the radiator and the line of the direction of the wave arrival.
The polarization plane of wave S is placed under angle X to the figure
plane

E =Ecosy .

The tangential component of the intensity vector on the surface

of the dipole is
E, =E’sin08"“*" =E cos y singe™ >’

Here it is accepted, that the phase of tangential component of
vector £ in the dipole centre (z =0) is equal to zero.

The electromotive force in elements dz , symmetrically located
with respect to the centre of the dipole, is written down as

d€, =Ecosysinfe’™ ' dz;
d€,, =Fcos )gin §é “*'dz.

Sum of EMF in elements dz is
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dE =dE, +dE,, =Ecos ysinO =9 + ¢1=09 )y =
=2FEcos xsinf coslkz cosB)dz '
Let us determine the voltage on terminals, which arises owing to
the occurrence of EMF in element dz . For this purpose the reciprocity
principle is used, its definition is: EMF & L applied to an input of

the linear passive two-port network (Fig. 8.2(a)), causes such current
I, on an output, as well as current /7, on an input at applying the

same EMF & ) to an output of the two-port network (Fig. 8.2(0)). If

EMF & ) is not equal to EMF & 5 then the reciprocity principle in

the analytical form is written down as the relation

& .6 61)
]2 [1
f
€ ]
. a
1
{E,
b
Fig. 8.2

With reference to dipole EMF 4 & 4 applied to its input

terminals (Fig. 8.3), causes current 7 . inelement dz , EMF & P

excited in element dz , causes current 7 4 on terminals. On the basis
of the reciprocity principle (8.1) the following relation can be set:
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Fig. 8.3

Hence EMF, which arises on dipole terminals with
the occurrence of EMF in element dz , is

- 1 -
d€ , =—=d&, .
]A
The ratio of current /_, in any section of the dipole to

the current on terminals is a function of the current distribution

f(z) :IZ :sml.c(l- z)
I, sin k/

The total EMF on dipole terminals is
/

€, = [f(2)de,
0

After integration it is finally received

_EAcos y coslklcos®) - coskl

- !
:M J‘sin k(- z)coslkz cosB)dz .
sin kl b

; ; (8.2)
7 sinkl sin @

Let us express the obtained EMF value through the effective
length of the aerial. From formula (4.13) value of the effective length is
/ zil— cos kl (8.3)
¢ m sinkl ’
For the dipole a maximum of non-normalized DC (4.9) is
fn(8) =1- coskl .

Therefore normalized dipole DC is
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) — cos(kl cos0) - coskl

Flo) =—=
sin (1 - cos kl)

Taking into account the value of normalized DC from formula
(8.2) and the value of the effective length (8.3)

€, =ElcosxF ). (8.4)

Thus, EMF on terminals of the dipole, placed in the field of
the flat electromagnetic wave, is defined by parameters of the aerial
(the effective length and the normalized DC), the intensity of the electric
field, as well as by the orientation of the intensity vector of the electric
field with respect to the dipole.

8.2. The reciprocity principle in the theory of reception aerials

Application of the reciprocity principle is possible under
condition, that characteristics of aerials and medium, in which
electromagnetic waves are propagated, do not depend on current,
voltage and intensity of the electromagnetic field. Besides, the medium
must be isotropic. Such conditions in most cases are completely
satisfied.

Let us consider two aerials (Fig. 8.4(a)), which are spaced apart
significantly. Types and designs of these aerials may be completely
different. Let us connect the source of EMF with the internal impedance

Z,, to the first aerial. Loading Z,, is supplied to the terminals of
the second aerial.

fz
y e
£, =
) P
Z 4 Ezl:l %2 R 22
h 1 2 1 ol b
et b

Fig. 8.4
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Under the action of & . in the first aerial current 7, will flow,

owing to what there will be the radiation field, which intensity electric
vector on the surface of the second aerial will have value £, . Owing to

it current 7 1> Will flow in the second aerial.

The electromotive force, which operates between terminals of
the first aerial, is

E=I1z,+2,) (8.5)
where Z ,, is the input resistance of the aerial.
The field intensity £, is
E, =Ae(6,,¢)1,1,F(6,,¢)e" "),

(8.6)

30k _;
e . Z_, is the effective length of the first aerial,

where A =i
7

0,,@, are coordinates of the second aerial in the spherical system,
which origin coincides with the phase centre of the first aerial.

From formula (8.6) values of the current of the first aerial can be
found

j_ = E2
| Ael(elﬂ%)lelfi(ela%)ew‘(ﬁl"ﬂl)’

and after its substitution in expression (8.5)

é == EZ(ZA1+ZL1)
1 Ael(ﬁl, @ )ZeIE(gl’ §01)eiw1(91"7’1) ’

(8.7)
Now let us supply EMF & ) to the terminals of the second

aerial; the first aerial will work in a mode of reception (Fig. 8.4, b).
Similarly,
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_ Elz,+7)
" 46,0, )L F (0, ¢, )"

(8.8)
where values with index 2 are attributed to the second aerial and have
the appropriate components of similar values with index 1.

The principle of reciprocity (8.1) in the theory of receiving

aerials is thus formulated: the ratio of EMF & , on terminals of the

first aerial to current 7 &, » induced in the second aerial by the field of
the first

aerial, at constant position of aerials is equal to the ratio of EMF & 5

on terminals of the second aerial to current /x , which is induced in

the first aerial by the field of the second aerial. Using given
designations:

&6

Iy

8.9
7 (8.9)

R2
Substituting values & ) from formula (8.7) and & 5 from

formula (8.8) in expression (8.9), reducing all values, concerning with
the first aerial in the left part, and with the second aerial — in the right
part

1,(Z,+2,) 3 1(2,+7,,)

—

iy - iy H, )
el(gp%)EllelE(@p%) nlong) ez(ez:ﬁpz)Ezleze(ez’@z) B
) (8.10)
As polarization of vector [, is defined by polarizing
properties of the second aerial, and polarization of vector £, - by

polarizing properties of the first aerial, and as direction &, and ¢, in
the spherical coordinate system, adhered to the first aerial, determines
the angular position of the second aerial, and direction €, , @, in the
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spherical coordinate system, adhered to the second aerial, determines
the angular position of the first aerial, then vectors £, and £, canbe
written down using polarizing multipliers of aerials:

E, =E1e2(492,(p2)
and ) _

E, =E,e(0,.¢,)

Substituting values of vectors £ and £, in equation (8.10),

in denominators of both parts, we obtain the same scalar product of
polarizing vectors
el(t9l,(,01 )62(62,%) :

It will be shown later, that the square of the scalar product of
polarizing vectors defines the factor of the polarizing coordination.

As it has been specified before, both aerials have been chosen
without restrictions on their design and the principle of operation,
therefore, the ratio of quantities, which enter the left and the right parts
of equation (8.10) do not depend on the type of the aerial and should be
equal to some constant C' . So, for any aerial it can be written down

: 142, + Z.L() ] =Cle,,e,),

EleF(G,(p)e”” 0.
where owing to the generalization of the received expression there are
designations for polarizing vector e, of the aerial and for the vector
of polarization of the electromagnetic field, in which there is receiving
aerial e, . It is obvious, that for the first aerial e, 261(91,q01) and

ep =e2(l92,(/)2), and for the second aerial e, 262(92,(p2) and
ep =el(¢91,q01).

From the generalized expression the current, which flows
through terminals of the receiving aerial is

) ELF(0,p)e"'""
Z,+Z, '

The electromotive force on terminals of the receiving aerial is

- -

jR :C(eA,eR
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g, =Cle, e )JELF(B,p)e"" . 1)

To determine constant C, expression (8.11) can be compared with
the expression for EMF on terminals of the receiving dipole (8.4).

In Fig. 8.1 angle @ is measured from axis Z of the dipole,
therefore the plane of the figure is the meridional plane in the spherical
coordinate system. Comparing Fig. 8.1 with Fig. 3.1, it can be noted,
that for the dipole, as well as for an electric elementary dipole, when
they are plotted along the axis, from which the meridional angle is
measured, the unit polarizing vector takes the value

e, =0,.

In an incident wave (see Fig. 8.1) vector £ is perpendicular to
the direction of the wave propagation and can obtain two cophased
components £, and £, at linear polarization. It is apparent from
Fig. 8.1 that E, =E'=Ecos). So, the polarization vector of
the incident wave is

e, =0,cos x +@,sin x .

It is obvious, that for this case

(eA,eP) =CoSX .
For the dipole w(0,9) =0, therefore, comparing the right parts
of formulas (8.4) and (8.11)
C(eA,eP) =Cos X .
Thus, the constant C' is equal to unity.
Taking into account value of the constant C (8.11) and values

of the effective length (2.45), finally, the expression for the current of
the receiving aerial can be written down

i _Ele,.e;) /DRZZ F(6, )00
Z,+7Z, \30k
(8.12)

where Z,, is the input impedance of the receiver (the loading
impedance of the aerial).

So, the current flowing through terminals of the aerial, which
operates in the reception mode, can be defined by parameters of
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the same aerial, which is in the transfer mode. Therefore parameters of
the aerial can be defined in the radiation mode or in the reception mode
of electromagnetic waves no matter in what mode the aerial will be
used. The directional characteristic, DF of the aerial is identical whether
operating on radiation or reception, if the transmitter and the receiver
are connected to the same terminals.

The receiving aerial can be considered as a source of EMF,
which values are determined from expression (8.11)

E:‘A :E(eA,eP)leF(Q,w)ei”’(e"”), (8.13)

and the internal impedance has value Z . Formula (8.13) is used to
calculate of EMF generally.

At the polarizing matching we obtain |(eA,€p)| =1. If to
match the aerial polarization and orient the DC maximum in the

direction of the wave arrival, then on the aerial terminals EMF will be
maximal:

gAmax :Eé . (814)
From expression (8.14) it is possible to derive a formula for
the effective length of the receiving aerial (2.43).

8.3. Power in loading of the receiving aerial

Let us determine the power, which is allocated in loading of
the receiving aerial. For this purpose from expression (8.12)
the amplitude value of the current, which flows through terminals of

the receiving aerial with the loaded complex resistance Z, =R, +iX,

can be found:
. Ele e, [DR
I, =——4aCr 2 r(0,q). 8.15
* Tz vz o O B

Taking into account formula (2.31) and expression for
efficiency (2.18), let us make such replacement in formula (8.15)

DRy =GR,, (8.16)
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where R, =Ry + R, 5 is the active component of the antenna input

resistance.
The load power is
1

P :EI;RL.
Using expressions (8.15) and (8.16) we obtain:
E*GF*6,¢) 4R,R, [~ ~
= ; =L [le,e0)f . (817)
240k | Z,+ ZL|
For convenience of the further analysis let us enter designations
_ 4R,R, _ 4R R,

'0_|ZA+ZL|2 (R, +R)V+(x,+x,) (8.18)
a,, =le, e (8.19)
2 2 2
p, =L£G _EGL (8.20)
240k 9607

Expression (8.17) with the entered designations becomes
P =p, F0,9)pa,, . (8.21)

It follows from formula (8.21), that the load power of
the receiving antenna is defined by four factors. First of them (8.20) has
the dimension of power, while the others are dimensionless.

The square of the normalized DC is a number, which value
depends on the DD orientation in space. At orientation of the DD
maximum in the direction of the wave arrival the DC value

Fmax(e @) =1, Thus, by changing the angular position of the axis or

the aperture of the aerial (turn of its DD) it is possible to increase
the load power.

Value O [see formula (8.18)] characterizes the matching of
the input impedance of the aerial with the load impedance. Value £
reaches its maximum at the full matching

Z,=Z,
or
R, =R X

A

4 s =-X,. (8.22)
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When condition (8.22) is satisfied, then © =1. In other cases
p<l,

Quantity <,,, [see formula (8.19)] represents the factor of
the polarizing coordination (2.13). Really, if 7(0,¢) =1 and p =1 at
a,, #1 expression (8.21) will express power % asism., Which is
absorbed in loading at any polarization of an incident wave, which does
not coincide with the polarization of the aerial. If the polarization of
the wave correlates with the polarization of the aerial e, =e, and
the scalar product of unit vectors will be equal to unity, power
P rraren. , absorbed at the full polarizing coordination, will be
maximal. It is obvious, that if we substitute the specified powers in
formula (2.12), we shall derive expression (8.19).

The unit polarizing vector can be considered as a complex
vector, which is determined through an intensity vector of
the electromagnetic field (1.72) using the relation

- -
. iwt E

e, =epe'” =

EE"
The real part of this complex vector is equal to
Re(epe[“”) =0, cos B coswt + @, sin Bcoslawrt +y,)  (8.23)

and for every moment of time it coincides with the direction of the field
intensity vector of radiated waves.
As it follows from definition of the complex polarizing vector

cos B = |2E6| -
V|EH| +|E¢|
and
sin 8 = |Eq)|

JEL +|E[

In the same way we can determine the complex polarizing
vector e, , using expression for the radiation field of the considered

aerial.
Therefore the presented definition of the unit polarizing vector
as the complex vector can be written down as
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4.

e, =0ye,, + @ye,, =0,cosa +q,sinae";
e iy N - A (8.24)
ep =0yepy + oy, =0,008 5 +@,sin fe''",
where trigonometrical functions of angle X are determined through
orthogonal components of vector £ of the antenna radiation field

A
£
cosa =—=—r———
A A
2|+ |2
and
£
sina = — 7 —
A A :
[+ |2

Components of the right part of equation (8.23) correspond to
two orthogonal linearly-polarized components of the field intensity £}
and £, , therefore the end of vector e,e' describes a polarizing

ellipse. Connection between parameters of the polarizing vector (8.23)
and the polarizing ellipse can be expressed by the equation

tg2 _2ctg Bcosy,

- 8.25
1- ctg’ftg’

K’ :ig—ﬁ%y‘ (8.26)
ctg™f - tg7y

At B =45°  as it follows from formula (8.25) ¥ =45° . For
these values [ and X the right part of formula (8.26) becomes
uncertain. Getting rid of uncertainty

K, :tgw—”.
2

The factor of the polarizing coordination (8.19) is equal to
the square of the module of the scalar product of the unit polarizing
complex vectors (8.24) and its values can vary from zero to unity. If
the aerial of the linear polarization is used and the incident wave on
the aerial is polarized linearly, then vectors e, both e, are real and
their scalar product is equal to cosine of a spatial angle between them -
COS X' where cos xy =cosacos S +sinasin 3,

So,
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a,, =cos’ x . (8.27)
Generally according to equation (8.24) the polarizing
coordination factor comes [19]

) :[cosacos B +sinasin feosly ‘”//P)]z
+sin” arsin® p’sinz(sz 'Hl’p) = (8.28)
. ) 1. .
=cos’ azcos’ B +sin’ asin® f + Esm 2asin2f cos(wA +1,Up).

It is evident, that the right parts of equations (2.13) and (8.28)
express the same quantity through different parameters.

Coming back to expression (8.21), we can see, that in the right
part three factors take the maximal values, equal to unity, under such
conditions:

- Overlapping of a direction of a maximum of a wave reception
with a direction of its arrival (Fmax(Q,QD) =1);

- Matching of the aerial input impedance with the load
impedance (p=1;

- At the full polarizing coordination of the aerial with
the accepted electromagnetic wave \a,,, =1).

Simultaneous realization of these three conditions results in
the allocation of the maximal power in the loading. Its values can be
found from expression (8.20). Taking into account formula (2.31),
expression (8.20) takes the form

E’DX
P =Nag g0

If in the aerial there are no losses, then 77, =1. At this value of
the maximal power, which is absorbed in the matched loading of
the lost-free antenna, is

_E’DX
max 960%2 :
The same power can be calculated, using the formula for
the effective area S, (2.36) and the formula for the density of a power
flux /7 in free space (1.77) at W =120m;

(8.29)
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E2
P, =IIS, = S, . (8.30)
240

Equating the right parts of expressions (8.29) and (8.30), we can
find connection between the directivity factor and the effective area
(2.37) (it was previously considered without the proof).

8.4. Noise temperature of the aerial

The operating quality of separate circuits of the acceptance
system is frequently estimated by the ratio of a useful signal power to
the interference power. Sources of the interference are lightning, space,
industrial radiations, radiations of radio stations, thermal noise.

Power of interference can be determined by formula (8.30) at
the known power density. But it is more convenient to estimate
the obstacle power by the effective noise temperature, which
characterizes the power of the thermal noise, generated in the resistor in
the matched loading:

By™ =kNT (8.31)

where k£ =1.38 10 Bﬂ is Boltzmann’s constant; Af is the
7 -

band of frequencies, for which the thermal noise power is defined; 7" is
the absolute temperature.

Let us define in the similar way the noise power, generated in
the aerial matched loading. Using expression (8.30) and having
determined the effective area from formula (2.37):

2
s, =2"D.
47

Generally, DF depends on the radiation direction [see formula
(2.22)], therefore, the effective area depends on the direction of
the electromagnetic wave arrival

2
s.(6,¢) =4)L—DF2(H,(p) . (8.32)
T

Let the power density of the noise radiation in borders of unit of
a solid angle be equal to 1/ ]:,(9,(p). Then some part of the noise
power, allocated in the antenna loading owing to reception of

144



electromagnetic waves in borders of the angle
dQ =dS/r* =sinOdbdg , is calculated in the following way:
dP, =I1,,(0,¢)S.(0,¢)sin0dod g .

The polarization of noise of electromagnetic waves is random,
whereas the aerial accepts waves of certain polarization. According to
expression (8.21) at © =1 it is possible to write down

dpP, =I1,(0,9)S,(0,¢)a,,, sin0dode .

Let us assume, that the aerial of the linear polarization is
considered and electromagnetic waves from noise sources are also
linearly polarized, but their polarization planes are oriented in space
arbitrarily. In this case value &,, is determined from expression

(8.27). For noise signals it is possible to consider, that angle X is
random and the probability density of angle X is uniformly
distributed from 0 to 7U. Therefore, a mean value of power, which is
absorbed in the aerial loading at reception of waves and propagates in an
element of the solid angle d€2, can be found from the formula

dpP, :% J'H];,(H,(p)Se(H,qo)coszXsin@d@d(pdx =
; .

=0.517,(0,¢)S.(6,¢)sin0dod
The total noise temperature is

T2

P, =05 | J‘H,;,(B,(p)Se(B,(p)sianHd(p. (8.33)
00

The density of the noise power per unit of the solid angle,
according to Rayleigh-Jeans law, is equal to

_2kT,,(0,¢)Af

17,(0,¢) PO (8.34)

where 7,,.(0,9) is an effective temperature of the medium in
the direction, determined by coordinates & and ¢ .

Having substituted expressions (8.32) and (8.34) in equation
(8.33) we obtain:
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T 2w

P, kAfD J‘JTGW 0,p)F*(0,¢)sinOdod .

(8.35)

At entering concept of the aerial noise temperature 77, the
noise power, generated in loading, will be defined similarly to
expression (8.31)

Py =kANT, . (8.36)

Equating the right parts of equations (8.35) and (8.36),
the calculation formula for the noise temperature of the aerial can be
found:

T2

T, = IJT (0,9)F*(0,¢9)sin0dodgy . (8.37)

In the case when the effective temperature of the medium in
borders of the beamwidth does not depend on angular coordinates,
expression (8.37) in view of formula (2.25) takes the form

T _]—;nv .

Distribution of the effective temperature 7. env(@ (p) depends

on the wave band and the position of noise sources. At low frequencies
atmospheric and industrial noises prevail, in UHF range - space and
thermal obstacles.
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