
8. THE THEORY OF RECEIVING ANTENNAS

The receiving aerial is destined for reception of electromagnetic
waves  and  transformation  of  their  energy  to  the  energy  of  directed
waves  or  currents  of  the  high  frequency.  The  operation  principle  of
the  reception  aerial  differs  from  the  operation  principle  of
the transmitting aerial. To show this, let us place the aerial in the field of
the electromagnetic wave. It is obvious, that under action of a tangential
component of the intensity vector of the electric field in every aerial
element  EMF will  be  induced. In  contrast  to  the  transmitting  aerial
where  the  applied  EMF is  concentrated  between  input  terminals,  in
the  reception  aerial electromotive  forces are  allocated  all  over
the surface. 

Due to the occurrence of the dispersed EMF in the reception
aerial  the  current  starts  flowing.  This  results  in  the  inducing  of
the secondary  field,  excited  by the  reception  aerial.  The  intensity  of
the secondary field may be found from the boundary condition: the sum
of tangential intensity components of primary and secondary fields on
the  antenna  surface  should  be  equal  to  zero.  Such secondary field,
a  reradiating  field,  is  typical  for  the  aerial,  which  operates  in
the reception mode.

Thus,  the  aerial  operation  in  the  reception  mode  essentially
differs from the operation in the transmitting mode. These features of
reception aerials result in that their theoretical research is more complex
in  comparison  with  the  transmitting  aerials.  In  this  connection  for
the  definition  of  the  basic  properties  of  the  reception  aerials
the reciprocity  principle  is  applied.  According to  it  characteristics of
the  aerial,  that  functions  in  the  reception mode,  is  determined  from
parameters of the same aerial operating in the transmitting mode.

8.1 The dipole in the field of the flat electromagnetic wave

The mechanism of the EMF occurrence on the dipole terminals
under action of an electromagnetic field may be considered by means of
the strict theory, which is stated in subsection 4.3. If to assume, that
the  current  distribution  in  the  reception  aerial  is  the  same  as  in
the transmitting aerial, the analysis of dipole operation in the reception
mode becomes simpler.
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Fig. 8.1

Let us find EMF on terminals of the dipole, placed in a field of
a flat wave. Generally, the polarization plane of an incident wave does
not coincide with a plane, which is combined with an axis of the dipole
and direction of the wave arrival. In Fig. 8.1 the dipole with length l2 ,
loaded on impedance НZ  is presented. In the plane of figure there is
the axis of the radiator and the line of the direction of the wave arrival.
The polarization plane of wave S is placed under angle   to the figure
plane

cosEE  .
The tangential component of the intensity vector on the surface

of the dipole is
  coscos sincossin іkzkzkzіkz

Z еEeEE  .
Here it is accepted, that the phase of tangential component of

vector E  in the dipole centre  0z  is equal to zero.
The electromotive force in elements dz , symmetrically located

with respect to the centre of the dipole, is written down as
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Let us determine the voltage on terminals, which arises owing to
the occurrence of EMF in element dz . For this purpose the reciprocity

principle is used, its definition is:  EMF  
1 , applied to an input of

the linear passive two-port network (Fig.   8.2(a)), causes such current

2I  on an output, as well as current 1I  on an input at applying the

same EMF 
2  to an output of the two-port network (Fig. 8.2(b)). If

EMF 
1  is not equal to EMF 

2 ,  then the reciprocity principle in

the analytical form is written down as the relation
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                                     Fig. 8.2

With  reference  to  dipole  EMF  
Ad ,  applied  to  its  input

terminals  (Fig. 8.3), causes current zI  in element dz , EMF 
Zd ,

excited in element dz , causes current AI  on terminals. On the basis
of the reciprocity principle (8.1) the following relation can be set:
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Fig. 8.3

Hence  EMF,  which  arises  on  dipole  terminals  with
the occurrence of EMF in element dz , is
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The  ratio  of  current zI  in  any  section  of  the  dipole  to
the current on terminals is a function of the current distribution
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The total EMF on dipole terminals is
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After integration it is finally received
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Let  us express the obtained  EMF value through the effective
length of the aerial. From formula (4.13) value of the effective length is
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For the dipole a maximum of non-normalized DC (4.9) is
  klf cos1max  .

Therefore normalized dipole DC is
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Taking into account the value of normalized DC from formula
(8.2) and the value of the effective length (8.3)

                                              FlE eA cos .                    (8.4)

Thus,  EMF on terminals of  the dipole,  placed in the field of
the flat  electromagnetic wave,  is  defined by parameters of  the aerial
(the effective length and the normalized DC), the intensity of the electric
field, as well as by the orientation of the intensity vector of the electric
field with respect to the dipole.

8.2. The reciprocity principle in the theory of reception aerials

Application  of  the  reciprocity  principle  is  possible  under
condition,  that  characteristics  of  aerials  and  medium,  in  which
electromagnetic  waves  are  propagated,  do  not  depend  on  current,
voltage and intensity of the electromagnetic field. Besides, the medium
must  be  isotropic.  Such  conditions  in  most  cases  are  completely
satisfied.

Let us consider two aerials (Fig. 8.4(a)), which are spaced apart
significantly.  Types  and designs  of  these  aerials  may be  completely
different. Let us connect the source of EMF with the internal impedance

1LZ  to the first aerial. Loading 2LZ  is supplied to the terminals of
the second aerial.

Fig. 8.4
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Under the action of 
1  in the first aerial current 1I  will flow,

owing to what there will be the radiation field, which intensity electric
vector on the surface of the second aerial will have value 2E . Owing to

it  current 2LI  will flow in the second aerial. 
The electromotive force, which operates between terminals of

the first aerial, is 

                             ),ZZI LA 1111                          (8.5)

where 1AZ  is the input resistance of the aerial. 

The field intensity 2E  is

                 111 ,
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(8.6)

where  ikre
r

k
iA 
30

;  1el  is the effective length of the first aerial,

11 ,  are  coordinates  of  the  second aerial  in  the  spherical  system,
which origin coincides with the phase centre of the first aerial.

From formula (8.6) values of the current of the first aerial can be
found 
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and after its substitution in expression (8.5)
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(8.7)

Now let  us supply EMF  2
  to the terminals of the second

aerial;  the first  aerial will  work in a mode of reception (Fig. 8.4, b).
Similarly, 
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where values with index 2 are attributed to the second aerial and have
the appropriate components of similar values with index 1.

The  principle  of  reciprocity (8.1) in  the  theory  of  receiving

aerials is thus formulated: the ratio of EMF  
1  on terminals of the

first  aerial to current 
2RI , induced in the second aerial by the field of

the first

aerial, at constant position of aerials is equal to the ratio of EMF 
2 ,

on terminals of the second aerial to current  
1RI , which is induced in

the  first  aerial  by  the  field  of  the  second  aerial.  Using  given
designations:
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Substituting  values  
1  from  formula (8.7) and 

2  from

formula (8.8) in expression (8.9), reducing all values, concerning with
the first aerial in the left part, and with the second aerial – in the right
part   
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As  polarization  of  vector  
1E


 is  defined  by  polarizing

properties  of  the  second aerial,  and  polarization  of  vector  
2E


 -  by

polarizing properties of the first aerial, and as direction 1  and 1  in
the spherical coordinate system, adhered to the first aerial, determines
the angular position of the second aerial, and direction 2 ,  2  in the

136



spherical  coordinate system, adhered to the second aerial,  determines

the angular position of the first aerial, then vectors 
1E


 and 
2E


 can be

written down using polarizing multipliers of aerials:

                                                 22211  ,eEE




and

                                                 11122 ,eEE


 .

Substituting values of vectors 
1E


 and 
2E


 in equation (8.10),

in denominators of  both parts,  we obtain the  same scalar  product  of
polarizing vectors
                                                  222111  ,e,e .

It will be shown later, that the square of the scalar product of
polarizing vectors defines the factor of the polarizing coordination.

As it has been specified before, both aerials have been chosen
without  restrictions  on  their  design  and  the  principle  of  operation,
therefore, the ratio of quantities, which enter the left and the right parts
of equation (8.10) do not depend on the type of the aerial and should be
equal to some constant C . So, for any aerial it can be written down
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where owing to the generalization of the received expression there are
designations for polarizing vector Ae


 of the aerial  and for the vector

of polarization of the electromagnetic field, in which there is receiving
aerial  Pe


. It is obvious, that for the first aerial   111 ,eeA


  and

 222 ,eeP


 ,  and  for  the  second  aerial   222 ,eeA
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
 .

From  the  generalized  expression  the  current,  which  flows
through terminals of the receiving aerial is
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The electromotive force on terminals of the receiving aerial is

137



                                   θ,іkzψ
eRAA eθ,FlЕeeCε  , .             (8.11)

To  determine  constant C,  expression  (8.11)  can  be  compared  with
the expression for EMF on terminals of the receiving dipole (8.4).

In Fig.  8.1 angle    is  measured from axis  z of the dipole,
therefore the plane of the figure is the meridional plane in the spherical
coordinate system. Comparing Fig. 8.1 with Fig. 3.1, it can be noted,
that for the dipole, as well as for an electric elementary dipole, when
they are  plotted  along  the  axis,  from which  the  meridional  angle  is
measured, the unit polarizing vector takes the value
                                                         0


Ae .

In an incident wave (see Fig. 8.1) vector E


 is perpendicular to
the  direction  of  the  wave  propagation  and  can  obtain  two cophased
components  E  and  E  at  linear  polarization.  It  is  apparent  from

Fig.  8.1  that   cosEEE  . So,  the  polarization  vector  of
the incident wave is 
                                           sincos 00


Pe .

It is obvious, that for this case
                                                        cos, PA ee


.

For the dipole   0,  , therefore, comparing the right parts
of formulas (8.4) and (8.11)
                                                     cos, PA eeC


.

Thus, the constant C  is equal to unity.
Taking into account value of the constant C  (8.11) and values

of the effective length (2.45), finally, the expression for the current of
the receiving aerial can be written down 
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(8.12)
where  НZ  is  the  input  impedance  of  the  receiver  (the  loading
impedance of the aerial).

So, the current flowing through terminals of the aerial, which
operates  in  the  reception  mode,  can  be  defined  by  parameters  of
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the same aerial, which is in the transfer mode. Therefore parameters of
the aerial can be defined in the radiation mode or in the reception mode
of  electromagnetic  waves no matter  in  what  mode the aerial  will  be
used. The directional characteristic, DF of the aerial is identical whether
operating on radiation or reception, if the transmitter and the receiver
are connected to the same terminals.

The  receiving  aerial  can  be  considered  as  a  source  of  EMF,
which values are determined from expression (8.11)

                                           θ,іkzψ
ePAA eθ,FleeЕε ),(

  ,    (8.13)

and the internal impedance has value  AZ . Formula (8.13) is used to
calculate of EMF generally.

At  the  polarizing  matching  we  obtain    1, PA ee


.  If  to
match  the  aerial  polarization  and  orient  the  DC  maximum  in  the
direction of the wave arrival, then on the aerial terminals EMF will be
maximal:
                                                      eA lEmax . (8.14)

From expression (8.14) it  is  possible to  derive a  formula for
the effective length of the receiving aerial (2.43).

8.3. Power in loading of the receiving aerial

Let us determine the power,  which is  allocated in loading of
the  receiving  aerial.  For  this  purpose  from  expression  (8.12)
the amplitude value of the current,  which flows through terminals of
the receiving aerial with the loaded complex resistance LLL іkzXRZ 

can be found: 

                                   
 

  ,
30

,
2 F

k

DR

ZZ
eeЕ

I
LA

PA
R







 . (8.15)

Taking  into  account  formula  (2.31)  and  expression  for
efficiency (2.18), let us make such replacement in formula (8.15) 

                                                    AGRDR  , (8.16)

139



where LOSA RRR    is the active component of the antenna input

resistance.
The load power is 

                                                    LRRIP 2

2

1
 .

Using expressions (8.15) and (8.16) we obtain:
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For convenience of the further analysis let us enter designations
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                                                    2, PApol eea
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 ;                         (8.19)
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GE
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GE
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Expression (8.17) with the entered designations becomes
                                             polaFPP  ,2

max . (8.21)
It  follows  from  formula  (8.21),  that  the  load  power  of

the receiving antenna is defined by four factors. First of them (8.20) has
the dimension of power, while the others are dimensionless.

The  square  of  the  normalized  DC is  a  number,  which  value
depends  on  the  DD  orientation  in  space.  At  orientation  of  the  DD
maximum  in  the  direction  of  the  wave  arrival  the  DC  value

  1,max F . Thus, by changing the angular position of the axis or
the  aperture  of  the  aerial  (turn  of  its  DD)  it  is  possible  to  increase
the load power.

Value    [see  formula (8.18)]  characterizes  the  matching  of
the input impedance of the aerial with the load impedance. Value  

reaches its maximum at the full matching
                                                        *

LA ZZ 

or
                                           LALA XXRR      ; . (8.22)
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When condition (8.22) is satisfied, then  1 . In other cases
1 .

Quantity  pola  [see  formula  (8.19)]  represents  the  factor  of

the polarizing coordination (2.13). Really, if   1, F  and 1  at
1pola  expression  (8.21)  will  express  power  ..MismRP ,  which  is

absorbed in loading at any polarization of an incident wave, which does
not coincide with the polarization of the aerial.  If  the polarization of
the wave  correlates  with the  polarization  of  the  aerial  PA ee


  and

the  scalar  product  of  unit  vectors  will  be  equal  to  unity,  power

..MatchRP ,  absorbed  at  the  full  polarizing  coordination,  will  be
maximal.  It  is  obvious,  that  if  we substitute  the  specified powers  in
formula (2.12), we shall derive expression (8.19). 

The  unit  polarizing  vector  can  be  considered  as  a  complex
vector,  which  is  determined  through  an  intensity  vector  of
the electromagnetic field (1.72) using the relation
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E
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and for every moment of time it coincides with the direction of the field
intensity vector of radiated waves.

As it follows from definition of the complex polarizing vector 
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and
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
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 .

In  the  same  way  we  can  determine  the  complex  polarizing
vector  Ae


, using expression for the radiation field of the considered

aerial.
Therefore the presented definition of the unit polarizing vector

as the complex vector can be written down as
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where trigonometrical  functions  of  angle    are  determined through
orthogonal components of vector AE


 of the antenna radiation field 
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Components of the right part of equation (8.23) correspond to
two orthogonal linearly-polarized components of the field intensity E

and  E ,  therefore  the  end of vector  t
Pee i

 describes  a polarizing
ellipse. Connection between parameters of the polarizing vector (8.23)
and     the polarizing ellipse can be expressed by the equation
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At  45 , as it follows from formula (8.25)  45 . For
these  values    and    the  right  part  of  formula  (8.26)  becomes
uncertain. Getting rid of uncertainty

                                                
2

tg P
eК


 .

The  factor  of  the  polarizing  coordination  (8.19)  is  equal  to
the square of the module of the scalar  product of the unit  polarizing
complex vectors (8.24) and its values can vary from zero to unity. If
the aerial of the linear polarization is used and the incident wave on
the aerial is polarized linearly, then vectors Ae


 both Пe


 are real and

their scalar product is equal to cosine of a spatial angle between them -
cos , where  sinsincoscoscos  .

So,
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                                                    2cospola .     (8.27)
Generally  according  to  equation  (8.24)  the  polarizing

coordination factor comes [19]

  

 

 .cos2sin2sin
2

1
sinsincoscos

sinsinsin

cossinsincoscos

2222

222

2

PA

PA

PApola













(8.28)

It is evident, that the right parts of equations (2.13) and (8.28)
express the same quantity through different parameters. 

Coming back to expression (8.21), we can see, that in the right
part three factors take the maximal values, equal to unity, under such
conditions:

- Overlapping of a direction of a maximum of a wave reception

with a direction of its arrival   1,max F ;

-  Matching  of  the  aerial  input  impedance  with  the  load
impedance  1 ;

-  At  the  full  polarizing  coordination  of  the  aerial  with
the accepted electromagnetic wave  1pola .

Simultaneous  realization  of  these  three  conditions  results  in
the allocation of the maximal power in the loading. Its values can be
found  from  expression  (8.20).  Taking  into  account  formula  (2.31),
expression (8.20) takes the form

                                             
2

22

max π960




DE
P A .

If in the aerial there are no losses, then 1A . At this value of
the  maximal  power,  which  is  absorbed  in  the  matched  loading  of
the lost-free antenna, is

                                                
2

22

max π960

DE
P  . (8.29)

The  same  power  can  be  calculated,  using  the  formula  for
the effective area eS  (2.36) and the formula for the density of a power
flux П  in free space (1.77) at π120W :
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                                           ee S
E

ПSP
π240

2

max  . (8.30)

Equating the right parts of expressions (8.29) and (8.30), we can
find  connection  between the  directivity  factor  and  the  effective  area
(2.37) (it was previously considered without the proof).

8.4. Noise temperature of the aerial

The  operating  quality  of  separate  circuits  of  the  acceptance
system is frequently estimated by the ratio of a useful signal power to
the interference power. Sources of the interference are lightning, space,
industrial radiations, radiations of radio stations, thermal noise.

Power of interference can be determined by formula (8.30) at
the  known  power  density.  But  it  is  more  convenient  to  estimate
the  obstacle  power  by  the  effective  noise  temperature,  which
characterizes the power of the thermal noise, generated in the resistor in
the matched loading:
                                                  fTkPrez

N  , (8.31)

where  
КHz

W
1038.1 23


 k  is  Boltzmann’s  constant;  f  is  the

band of frequencies, for which the thermal noise power is defined; T  is
the absolute temperature.

Let us define in the similar way the noise power, generated in
the  aerial  matched  loading.  Using  expression  (8.30)  and  having
determined the effective area from formula (2.37):

                                                      DSe π4

2
 .

Generally, DF depends on the radiation direction [see formula
(2.22)],  therefore,  the  effective  area  depends  on  the  direction  of
the electromagnetic wave arrival

                                            


 ,
π4

, 2
2

DFSe  . (8.32)

Let the power density of the noise radiation in borders of unit of
a  solid  angle  be  equal  to    ,NП .  Then  some  part  of  the  noise
power,  allocated  in  the  antenna  loading  owing  to  reception  of
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electromagnetic  waves  in  borders  of  the  angle
 ddrdSd sin2  , is calculated in the following way:

                                      ddSПdP eNN sin,, .
The polarization of noise of electromagnetic waves is random,

whereas the aerial accepts waves of certain polarization. According to
expression (8.21) at 1  it is possible to write down

                                   ddaSПdP poleNN sin,, .
Let  us  assume,  that  the  aerial  of  the  linear  polarization  is

considered  and  electromagnetic  waves  from  noise  sources  are  also
linearly  polarized,  but  their  polarization planes  are  oriented  in  space
arbitrarily.  In  this  case  value  pola  is  determined  from  expression
(8.27).  For  noise  signals  it  is  possible  to  consider,  that  angle    is
random and          the probability density of angle    is uniformly
distributed from 0 to  π . Therefore, a mean value of power, which is
absorbed in the aerial loading at reception of waves and propagates in an
element of the solid angle d , can be found from the formula

                 
   

    




ddSП

dddSПdP

eN

eNN

sin,,5.0

sincos,,
π
1

0

2



  .

The total noise temperature is

                         
 


0

2

0

sin,,5.0 ddSПP eNN .           (8.33)

The  density  of  the  noise  power  per  unit  of  the  solid  angle,
according to Rayleigh-Jeans law, is equal to

                                     
 

2

,2
,






fkT
П env

N


 , (8.34)

where    ,envT  is  an  effective  temperature  of  the  medium  in
the direction, determined by coordinates   and  .

Having  substituted  expressions  (8.32)  and  (8.34)  in  equation
(8.33) we obtain:
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                        



 


 0

2

0

2 sin,,
4

ddFT
fDk

P envN .       

(8.35)
At  entering  concept  of  the  aerial  noise  temperature  AT  the

noise  power,  generated  in  loading,  will  be  defined  similarly  to
expression (8.31)
                                                AN fTkP  .                                 (8.36)

Equating  the  right  parts  of  equations  (8.35)  and  (8.36),
the calculation formula for the noise temperature of the aerial can be
found:

                            
 


0

2

0

2 sin,,
π4

ddFT
D

T envA .     (8.37)

In the case when the effective temperature of the medium in
borders  of  the  beamwidth  does  not  depend  on  angular  coordinates,
expression (8.37) in view of formula (2.25) takes the form 

                                       envA TT  .

Distribution of  the effective temperature    ,envT  depends
on the wave band and the position of noise sources. At low frequencies
atmospheric  and industrial  noises prevail,  in  UHF range -  space and
thermal obstacles.
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